首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1440篇
  免费   75篇
  国内免费   5篇
化学   1140篇
晶体学   7篇
力学   19篇
数学   166篇
物理学   188篇
  2023年   16篇
  2022年   17篇
  2021年   42篇
  2020年   49篇
  2019年   34篇
  2018年   17篇
  2017年   25篇
  2016年   51篇
  2015年   54篇
  2014年   46篇
  2013年   74篇
  2012年   93篇
  2011年   122篇
  2010年   57篇
  2009年   49篇
  2008年   97篇
  2007年   108篇
  2006年   86篇
  2005年   90篇
  2004年   60篇
  2003年   66篇
  2002年   70篇
  2001年   13篇
  2000年   13篇
  1999年   5篇
  1998年   10篇
  1997年   7篇
  1996年   31篇
  1995年   23篇
  1994年   18篇
  1993年   11篇
  1992年   16篇
  1991年   5篇
  1990年   6篇
  1989年   3篇
  1988年   6篇
  1987年   4篇
  1986年   2篇
  1985年   6篇
  1984年   6篇
  1983年   4篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
排序方式: 共有1520条查询结果,搜索用时 75 毫秒
81.
Novel hydrogel phases based on positively charged and zwitterionic surfactants, namely, N‐[p‐(n‐dodecyloxybenzyl)]‐N,N,N‐trimethylammonium bromide (pDOTABr) and p‐dodecyloxybenzyldimethylamine oxide (pDOAO), which combine pristine carbon nanotubes (CNTs), were obtained, thus leading to stable dispersions and enhanced cross‐linked networks. The composite hydrogel featuring a well‐defined nanostructured morphology and an overall positively charged surface was shown to efficiently immobilise a polyanionic and redox‐active tetraruthenium‐substituted polyoxometalate (Ru4POM) by complementary charge interactions. The resulting hybrid gel has been characterised by electron microscopy techniques, whereas the electrostatic‐directed assembly has been monitored by means of fluorescence spectroscopy and ζ‐potential tests. This protocol offers a straightforward supramolecular strategy for the design of novel aqueous‐based electrocatalytic soft materials, thereby improving the processability of CNTs while tuning their interfacial decoration with multiple catalytic domains. Electrochemical evidence confirms that the activity of the catalyst is preserved within the gel media.  相似文献   
82.
83.
BACKGROUND AND PURPOSE: Systemic lupus erythematosus (SLE) is an autoimmune disease in which almost all the organs are involved. Neuropsychiatric SLE is of one of the major concerns in the clinical evaluation of this disease. Routine magnetic resonance imaging (MRI) findings are often nonspecific or negative. In this study, we explored the use of diffusion tensor imaging in assisting with the diagnosis of SLE. METHODS: Data from 34 SLE patients (age range, 18-73 years) and 29 age-matched volunteers (age range, 29-64 years) were analyzed. MRI was performed on a 1.5-T clinical MR scanner with a quadrature head coil. The average diffusion constant (D(av)) and diffusion anisotropy maps [fractional anisotropy (FA)] were determined on a pixel-by-pixel basis. Regional diffusion measurements were made by region of interest in the genu and splenium of the corpus callosum (CC), anterior and posterior limb of the internal capsule (IC) and frontal lobe and thalamus. The diffusion distribution was fitted to a triple-Gaussian model. The mean of the brain tissue distribution was determined as a mean diffusion constant for the whole brain (BD(av)). Student's t test was used to determine the diffusion difference between SLE patients and control subjects. The SLE patients were separated into two groups according to their MRI results. A P value lower than .05 was considered to be statistically significant. RESULTS: Twenty of the 34 SLE patients with abnormal MRI results showed findings dominated by nonspecific white matter disease. The BD(av) and D(av) values of the frontal lobe, splenium CC and anterior IC were significantly higher in all SLE patients as compared with the control subjects. The SLE patients with normal MRI results also showed higher BD(av) and D(av) values in the frontal lobe, splenium and anterior and posterior limbs of the IC as compared with the control subjects. There was no significant difference in the D(av) values of the thalamus between the SLE patients and the control subjects. The BD(av) value in the SLE patient group was robustly correlated with the D(av) values of the frontal lobe, splenium and thalamus. These correlations were found to be similarly significant for the SLE patients with normal MRI findings. The diffusion anisotropy measurements showed that splenium CC had the highest FA value in both the control subjects and SLE patients. Overall, SLE patients had lower FA values in the genu and splenium CC as compared with the control subjects. In the group of patients with normal MRI findings, the FA values of the genu and splenium CC as well as the anterior IC were also lower than those in the control subjects. Pearson's correlation statistics revealed robust correlations between the measurements of D(av) and FA values in the SLE patient group. CONCLUSION: Quantitative diffusion imaging and diffusion anisotropy showed early changes in the brains of the SLE patients. Increased BD(av) and D(av) values of the frontal lobe as well as decreased anisotropy in the genu CC and anterior IC may represent preclinical signs of central nervous system involvement of SLE even when the routine MRI findings are negative or nonspecific. Quantitative diffusion analysis may prove to be useful in detecting the initial brain involvement of SLE and may enable monitoring of early disease progression and treatment efficacy.  相似文献   
84.
We have exploited the reactivity of antiaromatic boroles, gaining access to aryl‐substituted monocyclic 1,2‐azaborinines. The observed ring‐expansion reaction of inherently electron‐deficient boroles with organometallic and organic azides is demonstrated for representative examples. This substance class is expected to provide a new avenue into 1,2‐azaborinine chemistry, especially in the area of functional organoboron materials. Our results are based on NMR and UV/Vis spectroscopy as well as single‐crystal X‐ray crystallography and provide a virtually quantitative approach that also offers numerous points of variation.  相似文献   
85.
The plasma enhanced chemical vapor depositions of germanium chalcogenide thin films from germanium tetrachloride, hydrogen sulfide and alkyl chalcogenides were studied to determine the viability of these reagents for thin film deposition. Hydrogen sulfide is a commonly used reagent for this technique and was used to determine optimal reaction conditions for thin film deposition. Germanium tetrachloride, alkylsulfides and alkylselenides were also employed because of their lower potential toxicities and higher availabilities compared to their more typical congeners: germane, hydrogen sulfide and hydrogen selenide in the formation of germanium chalcogenides. Alkylsulfides were found to be unsuitable for the deposition of germanium sulfides, however alkylselenide precursors were used successfully for the deposition of germanium selenides. The relative mass flow rates, reactor pressure, substrate temperature and plasma power density were studied for their effects on germanium chalcogenide deposition. These parameters affected the composition, deposition rate, film quality, and spectroscopic properties of the deposited films.  相似文献   
86.
Asymmetric platinum donor–acceptor complexes [(pimp)Pt(Q2−)] are presented in this work, in which pimp=[(2,4,6-trimethylphenylimino)methyl]pyridine and Q2−=catecholate-type donor ligands. The properties of the complexes are evaluated as a function of the donor ligands, and correlations are drawn among electrochemical, optical, and theoretical data. Special focus has been put on the spectroelectrochemical investigation of the complexes featuring sulfonyl-substituted phenylendiamide ligands, which show redox-induced linkage isomerism upon oxidation. Time-dependent density functional theory (TD-DFT) as well as electron flux density analysis have been employed to rationalize the optical spectra of the complexes and their reactivity. Compound 1 ([(pimp)Pt(Q2−)] with Q2−=3,5-di-tert-butylcatecholate) was shown to be an efficient photosensitizer for molecular oxygen and was subsequently employed in photochemical cross-dehydrogenative coupling (CDC) reactions. The results thus display new avenues for donor–acceptor systems, including their role as photocatalysts for organic transformations, and the possibility to introduce redox-induced linkage isomerism in these compounds through the use of sulfonamide substituents on the donor ligands.  相似文献   
87.
Salts of the tetrakis(pentafluoroethyl)aluminate anion [Al(C2F5)4] were obtained from AlCl3 and LiC2F5. They were isolated with different counter-cations and characterized by NMR and vibrational spectroscopy and mass spectrometry. Degradation of the [Al(C2F5)4] ion was found to proceed via 1,2-fluorine shifts and stepwise loss of CF(CF3) under formation of [(C2F5)4−nAlFn] (n=1–4) as assessed by NMR spectroscopy and mass spectrometry and supported by results of DFT calculations. In addition, the [(C2F5)AlF3] ion was structurally characterized.  相似文献   
88.
The appropriate 1-arylhydrazinecarbonitriles 1a–c are subjected to the reaction with 2-chloro-4,5-dihydro-1H-imidazole (2), yielding 7-(4,5-dihydro-1H-imidazol-2-yl)-2-aryl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-imines 3a–c, which are subsequently converted into the corresponding amides 4a–e, 8a–c, sulfonamides 5a–n, 9, ureas 6a–I, and thioureas 7a–d. The structures of the newly prepared derivatives 3a–c, 4a–e, 5a–n, 6a–i, 7a–d, 8a–c, and 9 are confirmed by IR, NMR spectroscopic data, as well as single-crystal X-ray analyses of 5e and 8c. The in vitro cytotoxic potency of these compounds is determined on a panel of human cancer cell lines, and the relationships between structure and antitumor activity are discussed. The most active 4-chloro-N-(2-(4-chlorophenyl)-7-(4,5-dihydro-1H-imidazol-2-yl)-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)benzamide (4e) and N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-(p-tolyl)-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-[1,1′-biphenyl]-4-sulfonamide (5l) inhibits the growth of the cervical cancer SISO and bladder cancer RT-112 cell lines with IC50 values in the range of 2.38–3.77 μM. Moreover, N-(7-(4,5-dihydro-1H-imidazol-2-yl)-2-phenyl-6,7-dihydro-2H-imidazo[2,1-c][1,2,4]triazol-3(5H)-ylidene)-4-phenoxybenzenesulfonamide (5m) has the best selectivity towards the SISO cell line and induces apoptosis in this cell line.  相似文献   
89.
Hideyuki Tatsuno  Kasper S. Kjr  Kristjan Kunnus  Tobias C. B. Harlang  Cornelia Timm  Meiyuan Guo  Pavel Chbera  Lisa A. Fredin  Robert W. Hartsock  Marco E. Reinhard  Sergey Koroidov  Lin Li  Amy A. Cordones  Olga Gordivska  Om Prakash  Yizhu Liu  Mads G. Laursen  Elisa Biasin  Frederik B. Hansen  Peter Vester  Morten Christensen  Kristoffer Haldrup  Zoltn Nmeth  Dorottya Srosin Szemes   va Bajnczi  Gyrgy Vank  Tim B. Van Driel  Roberto Alonso‐Mori  James M. Glownia  Silke Nelson  Marcin Sikorski  Henrik T. Lemke  Dimosthenis Sokaras  Sophie E. Canton  Asmus O. Dohn  Klaus B. Mller  Martin M. Nielsen  Kelly J. Gaffney  Kenneth Wrnmark  Villy Sundstrm  Petter Persson  Jens Uhlig 《Angewandte Chemie (International ed. in English)》2020,59(1):364-372
Iron N‐heterocyclic carbene (NHC) complexes have received a great deal of attention recently because of their growing potential as light sensitizers or photocatalysts. We present a sub‐ps X‐ray spectroscopy study of an FeIINHC complex that identifies and quantifies the states involved in the deactivation cascade after light absorption. Excited molecules relax back to the ground state along two pathways: After population of a hot 3MLCT state, from the initially excited 1MLCT state, 30 % of the molecules undergo ultrafast (150 fs) relaxation to the 3MC state, in competition with vibrational relaxation and cooling to the relaxed 3MLCT state. The relaxed 3MLCT state then decays much more slowly (7.6 ps) to the 3MC state. The 3MC state is rapidly (2.2 ps) deactivated to the ground state. The 5MC state is not involved in the deactivation pathway. The ultrafast partial deactivation of the 3MLCT state constitutes a loss channel from the point of view of photochemical efficiency and highlights the necessity to screen transition‐metal complexes for similar ultrafast decays to optimize photochemical performance.  相似文献   
90.
Metal–organic frameworks (MOFs) and their derivatives are considered as promising catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which are important for many energy provision technologies, such as electrolyzers, fuel cells and some types of advanced batteries. In this work, a “strain modulation” approach has been applied through the use of surface‐mounted NiFe‐MOFs in order to design an advanced bifunctional ORR/OER electrocatalyst. The material exhibits an excellent OER activity in alkaline media, reaching an industrially relevant current density of 200 mA cm?2 at an overpotential of only ≈210 mV. It demonstrates operational long‐term stability even at a high current density of 500 mA cm?2 and exhibits the so far narrowest “overpotential window” ΔEORR‐OER of 0.69 V in 0.1 m KOH with a mass loading being two orders of magnitude lower than that of benchmark electrocatalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号